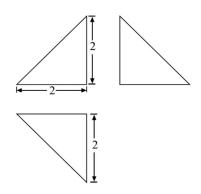
2020 年普通高等学校招生全国统一考试

文科数学

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.					
1. 已知集合 $A = \{1,2,3,5,7,11\}$, $B = \{x \mid 3 < x < 15\}$, 则 $A \cap B$ 中元素的个数为()					
A. 2	B. 3	C. 4	D. 5		
2. 若 $\overline{z}(1+i)=1-i$,则 z	= ()				
A. 1 - <i>i</i>	B. 1+ <i>i</i>	C i	D. <i>i</i>		
3. 设一组样本数据 <i>x</i> ₁ ,	x ₂ , …, x _n 的方差为 0	. 01,则数据 10 <i>x</i> ₁ ,10 <i>x</i> ₂	,···,10x』的方差为		
	<i>B.</i> 0.1	<i>C.</i> 1	<i>D.</i> 10		
4. Logistic 模型是常	用数学模型之一,可应	用于流行病学领城.有等	学者根据公布数据建立了		
某地区新冠肺炎累计	十确诊病例数 <i>I(t)(t</i> 的	单位:天)的 Logistic	模型: $I(t) = \frac{K}{1 + e^{-0.23(t-53)}}$,		
其中 K 为最大确诊病例数. 当 $I(t^*)$ =0.95 K 时,标志着已初步遏制疫情,则 t^* 约为					
()(ln19≈3)					
A. 60	В. 63	C. 66	D. 69		
5. 已知 $\sin\theta + \sin\left(\theta + \frac{\pi}{3}\right) = 1$,则 $\sin\left(\theta + \frac{\pi}{6}\right) = $ (
A. $\frac{1}{2}$	B. $\frac{\sqrt{3}}{3}$	c. $\frac{2}{3}$	D. $\frac{\sqrt{2}}{2}$		
6. 在平面内, A , B 是两个定点, C 是动点,若 $\overline{AC} \cdot \overline{BC} = 1$,则点 C 的轨迹为(
A. 圆	B. 椭圆	C. 抛物线	D. 直线		
7. 设 O 为坐标原点,直	直线 x = 2 与抛物线 C: j	$y^2 = 2px(p > 0)$ 交子 D	, <i>E</i> 两点,若		
$OD \perp OE$,则 C 的焦点坐标为()					
A. $\left(\frac{1}{4},0\right)$	B. $\left(\frac{1}{2}, 0\right)$	C. (1,0)	D. (2,0)		

8. 点 (0, -1) 到直线 y = k(x+1) 距离的最大值为 ()


A. 1

B. $\sqrt{2}$ C. $\sqrt{3}$

D. 2

9. 下图为某几何体的三视图,则该几何体的表面积是(

- A. $6+4\sqrt{2}$ B. $4+4\sqrt{2}$ C. $6+2\sqrt{3}$ D. $4+2\sqrt{3}$ D. 10. 设 $a = \log_3 2$, $b = \log_5 3$, $c = \frac{2}{3}$, 则 ()
 - A. a < c < b B. a < b < c C. b < c < a D. c < a < b

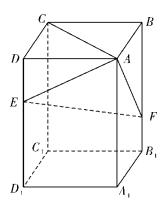
- 11. 在 $\triangle ABC$ 中, $\cos C=\frac{2}{3}$,AC=4,BC=3,则 $\tan B=($
- A. $\sqrt{5}$ B. $2\sqrt{5}$ C. $4\sqrt{5}$
- D. $8\sqrt{5}$

- 12. 已知函数 $f(x) = \sin x + \frac{1}{\sin x}$, 则 ()
 - A. f(x) 的最小值为 2
- B. f(x) 的图像关于 y 轴对称
- C. f(x) 的图像关于直线 $x = \pi$ 对称 D. f(x) 的图像关于直线 $x = \frac{\pi}{2}$ 对称
- 二、填空题: 本题共4小题,每小题5分,共20分.
- 13. 若 x, y满足约束条件 $\begin{cases} x+y \ge 0, \\ 2x-y \ge 0, \\ x \le 1, \end{cases}$, 则 z=3x+2y的最大值为_____.
- 14. 设双曲线 C: $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a>0, b>0)的一条渐近线为 $y = \sqrt{2} x$,则 C的离心率为
- 15. 设函数 $f(x) = \frac{e^x}{x+a}$. 若 $f'(1) = \frac{e}{4}$, 则 æ_____.
- 16. 已知圆锥的底面半径为1, 母线长为3, 则该圆锥内半径最大的球的体积为

- 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
 - (一) 必考题: 共60分.
- 17. 设等比数列 $\{a_n\}$ 满足 $a_1 + a_2 = 4$, $a_3 a_1 = 8$.
- (1) 求{a_n}的通项公式;
- (2) 记 S_n 为数列 $\{\log_3 a_n\}$ 的前n项和. 若 $S_m + S_{m+1} = S_{m+3}$, 求m.

18. 某学生兴趣小组随机调查了某市 100 天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):

锻炼人次 空气质量等级	[0, 200]	(200, 400]	(400, 600]
1 (优)	2	16	25
2(良)	5	10	12
3(轻度污染)	6	7	8
4(中度污染)	7	2	0


- (1) 分别估计该市一天的空气质量等级为1,2,3,4的概率;
- (2) 求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为 代表);
- (3) 若某天的空气质量等级为1或2,则称这天"空气质量好";若某天的空气质量等级为3或4,则称这天"空气质量不好".根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?

	人次≤400	人次>400
空气质量好		
空气质量不好		

附:
$$K^2 = \frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$
,

$P(R^2 \geqslant k)$	0. 050	0. 010	0. 001
k	3. 841	6. 635	10. 828

- 19. 如图,在长方体 $ABCD A_1B_1C_1D_1$ 中,点E ,F 分别在棱 DD_1 , BB_1 上,且 $2DE = ED_1$, $BF = 2FB_1$. 证明:
 - (1) 当AB = BC时, $EF \perp AC$;
 - (2) 点 C₁ 在平面 AEF 内.

- **20.** 已知函数 $f(x) = x^3 kx + k^2$.
 - (1) 讨论 f(x) 的单调性;
 - (2) 若f(x)有三个零点,求k的取值范围。

- 21. 已知椭圆 $C: \frac{x^2}{25} + \frac{y^2}{m^2} = 1(0 < m < 5)$ 的离心率为 $\frac{\sqrt{15}}{4}$,A,B分别为C的左、右顶点.
 - (1) 求 C 的方程;
- (2) 若点P在C上,点Q在直线x=6上,且|BP|=|BQ|, $BP\perp BQ$,求 $\square APQ$ 的面积.

(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.

[选修 4-4: 坐标系与参数方程]

- 22. 在直角坐标系 xOy 中,曲线 C的参数方程为 $\begin{cases} x = 2 t t^2, \\ y = 2 3t + t^2 \end{cases}$ (t 为参数且 $t \neq 1$), C与坐标轴交于 A, B两点.
 - (1) 求 | AB |:
 - (2) 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系, 求直线 AB 的极坐标方程.

[选修 4-5: 不等式选讲]

- 23. 设 a, b, $c \in R$, a+b+c=0, abc=1.
 - (1) 证明: ab+bc+ca<0;
 - (2) 用 $\max\{a, b, c\}$ 表示 a, b, c 中的最大值,证明: $\max\{a, b, c\} \ge \sqrt[3]{4}$.

