## 2020年普通高等学校招生全国统一考试 理科数学

| 1.已知集合 $A = \{(x,y)   x, y \in \mathbb{N}^*, y \ge x\}$ , | $B = \{(x, y) \mid x + y = 8\},$ | 则 $A \cap B$ 中元素的个数 |
|-----------------------------------------------------------|----------------------------------|---------------------|
| 为( )                                                      |                                  |                     |

A. 2

B. 3

C. 4

D. 6

2.复数
$$\frac{1}{1-3i}$$
的虚部是( )

- **A.**  $-\frac{3}{10}$  **B.**  $-\frac{1}{10}$
- C.  $\frac{1}{10}$
- **D.**  $\frac{3}{10}$
- **3.**在一组样本数据中,**1**, **2**, **3**, **4** 出现的频率分别为  $p_1, p_2, p_3, p_4$ ,且  $\sum_{i=1}^4 p_i = 1$ , 则下面四种情形中,对应样本的标准差最大的一组是(
  - **A.**  $p_1 = p_4 = 0.1, p_2 = p_3 = 0.4$

**B.**  $p_1 = p_4 = 0.4, p_2 = p_3 = 0.1$ 

- **C.**  $p_1 = p_4 = 0.2, p_2 = p_3 = 0.3$
- **D.**  $p_1 = p_4 = 0.3, p_2 = p_3 = 0.2$
- 4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布 数据建立了某地区新冠肺炎累计确诊病例数 I(t)(t) 的单位: 天)的 Logistic 模 型:  $I(t) = \frac{K}{1 + e^{-0.23(t-53)}}$ , 其中 K 为最大确诊病例数. 当  $I(t^*) = 0.95 K$  时,标志着 已初步遏制疫情,则 $t^*$ 约为( )(ln19≈3)
  - A. 60
- B. 63

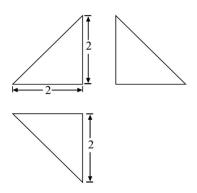
C. 66

- D. 69
- 5.设O为坐标原点,直线x = 2 与抛物线C:  $y^2 = 2px(p > 0)$  交于D, E两 点,若 $OD \perp OE$ ,则C的焦点坐标为(
  - **A.**  $\left(\frac{1}{4}, 0\right)$  **B.**  $\left(\frac{1}{2}, 0\right)$
- $\mathbf{C}$ . (1,0)
- **D.** (2,0)
- 6.已知向量 a, b满足|a|=5, |b|=6,  $a \cdot b=-6$ , 则  $\cos \langle a,a+b \rangle =$  (
  - **A.**  $-\frac{31}{35}$  **B.**  $-\frac{19}{35}$
- C.  $\frac{17}{35}$
- **D.**  $\frac{19}{35}$



- 7.在 $\triangle ABC$ 中, $\cos C = \frac{2}{3}$ ,AC = 4,BC = 3,则  $\cos B = ($  )
  - A.  $\frac{1}{9}$  B.  $\frac{1}{3}$

- 8.下图为某几何体的三视图,则该几何体的表面积是(



- A. 6+4 $\sqrt{2}$
- **B.** 4+4 $\sqrt{2}$
- C.  $6+2\sqrt{3}$  D.  $4+2\sqrt{3}$

- 9.已知  $2\tan\theta$ — $\tan(\theta + \frac{\pi}{4})$ =7,则  $\tan\theta$ = ( )
  - A. -2

**C.** 1

- D. 2
- **10.**若直线 l 与曲线  $y=\sqrt{x}$  和  $x^2+y^2=\frac{1}{5}$  都相切,则 l 的方程为( )
  - A. y=2x+1

**B.**  $y=2x+\frac{1}{2}$ 

- C.  $y = \frac{1}{2}x + 1$
- **D.**  $y = \frac{1}{2} x + \frac{1}{2}$
- 11.设双曲线 C:  $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$  (a>0, b>0) 的左、右焦点分别为  $F_1$ ,  $F_2$ , 离心率
  - 为 $\sqrt{5}$ . P是 C上一点,且  $F_1P \perp F_2P$ . 若 $\triangle PF_1F_2$ 的面积为 4,则 a= (
  - **A.** 1

B. 2

C. 4

- D. 8
- 12.已知  $5^5 < 8^4$ ,  $13^4 < 8^5$ . 设  $a = \log_5 3$ ,  $b = \log_8 5$ ,  $c = \log_{13} 8$ ,则(
  - A. a < b < c
- B. *b*<*a*<*c*
- C. *b*<*c*<*a*



二、填空题: 本题共 4 小题,每小题 5 分,共 20 分.

13.若 
$$x$$
,  $y$  满足约束条件 
$$\begin{cases} x+y \ge 0, \\ 2x-y \ge 0, \text{ , 则 } z=3x+2y \text{ 的最大值为}_{\underline{x} \le 1,} \end{cases}$$

14. 
$$(x^2 + \frac{2}{x})^6$$
 的展开式中常数项是\_\_\_\_\_ (用数字作答).

- 15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为
- 16.关于函数 $f(x) = \sin x + \frac{1}{\sin x}$ 有如下四个命题:
- ①f(x) 的图像关于y轴对称.
- 2f(x) 的图像关于原点对称.
- ③f(x) 的图像关于直线  $x=\frac{\pi}{2}$  对称.
- ④f(x)的最小值为 2.

- 三、解答题: 共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题 为必考题,每个试题考生都必须作答.第 22、23 题为选考题,考生根据要 求作答.
  - (一) 必考题: 共60分.
- 17.设数列 $\{a_n\}$ 满足 $a_1=3$ ,  $a_{n+1}=3a_n-4n$ .
  - (1) 计算  $a_2$ ,  $a_3$ , 猜想{ $a_n$ }的通项公式并加以证明;
  - (2) 求数列 $\{2^n a_n\}$ 的前 n 项和  $S_n$ .



18.某学生兴趣小组随机调查了某市 100 天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):

| 锻炼人次<br>空气质量等级 | [0, 200] | (200, 400] | (400, 600] |
|----------------|----------|------------|------------|
| 1 (优)          | 2        | 16         | 25         |
| 2 (良)          | 5        | 10         | 12         |
| 3(轻度污染)        | 6        | 7          | 8          |
| 4(中度污染)        | 7        | 2          | 0          |

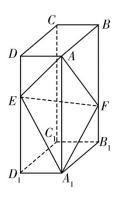
- (1) 分别估计该市一天的空气质量等级为1,2,3,4的概率;
- (2) 求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);
- (3) 若某天的空气质量等级为1或2,则称这天"空气质量好";若某天的空气质量等级为3或4,则称这天"空气质量不好".根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?

|        | 人次≤400 | 人次>400 |
|--------|--------|--------|
| 空气质量好  |        |        |
| 空气质量不好 |        |        |

附: 
$$K^2 = \frac{n(ad - bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$
,

| $P(K^2 \ge k)$ | 0.050 | 0.010 | 0.001  |
|----------------|-------|-------|--------|
| k              | 3.841 | 6.635 | 10.828 |

19.如图,在长方体  $ABCD - A_1B_1C_1D_1$  中,点 E, F 分别在棱  $DD_1, BB_1$  上,且  $2DE = ED_1$  ,  $BF = 2FB_1$  .



- (1) 证明:点 $C_1$ 在平面AEF内;
- (2) 若 AB = 2, AD = 1,  $AA_1 = 3$ , 求二面角  $A EF A_1$  的正弦值.

- **20.**已知椭圆 $C: \frac{x^2}{25} + \frac{y^2}{m^2} = 1(0 < m < 5)$  的离心率为 $\frac{\sqrt{15}}{4}$ , A, B分别为C的左、右顶点.
  - (1) 求*C*的方程;
  - (2) 若点P在C上,点Q在直线x = 6上,且|BP| = |BQ|, $BP \perp BQ$ ,求 $\triangle$  **APQ** 的面积.

- **21.**设函数  $f(x) = x^3 + bx + c$ , 曲线 y = f(x) 在点( $\frac{1}{2}$ ,  $f(\frac{1}{2})$ )处的切线与 y 轴垂直.
  - (1) 求 b.
  - (2) 若 f(x) 有一个绝对值不大于 1 的零点,证明: f(x) 所有零点的绝对值都不大于 1.

(二)选考题:共 10分.请考生在第 22、23 题中任选一题作答.如果多做,则按 所做的第一题计分.

[选修 4-4: 坐标系与参数方程](10分)

22.在直角坐标系 xOy 中,曲线 C 的参数方程为  $\begin{cases} x = 2 - t - t^2 \\ y = 2 - 3t + t^2 \end{cases}$ 

(t为参数且t+1),C与坐标轴交于A、B两点.

- (1) 求|AB|;
- (2)以坐标原点为极点, x 轴正半轴为极轴建立极坐标系, 求直线 AB 的极坐标方程.

[选修 4—5: 不等式选讲] (10 分)

- 23.设a, b,  $c \in R$ , a+b+c=0, abc=1.
- (1) 证明: ab+bc+ca<0;
- (2) 用  $\max\{a, b, c\}$ 表示 a, b, c 中的最大值,证明:  $\max\{a, b, c\} \ge \sqrt[3]{4}$ .

