# 2020年普通高等学校招生全国统一考试

# 文科数学

# 注意事项:

- 1. 答题前,考生务必将自己的姓名、准考证号填写在答题卡上.
- 2. 回答选择题时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案标号框涂黑.如需改动,用橡皮擦干净后,在选涂其它答案标号框.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.
- 3. 考试结束后,将本试卷和答题卡一并交回.
- 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.已知集合  $A=\{x||x|<3, x\in Z\}, B=\{x||x|>1, x\in Z\}, 则 A\cap B=($ 

A. Ø

B.  $\{-3, -2, 2, 3\}$ 

C.  $\{-2, 0, 2\}$ 

D. {-2, 2}

# 【答案】D

#### 【解析】

# 【分析】

解绝对值不等式化简集合A,B的表示,再根据集合交集的定义进行求解即可.

【详解】因为 
$$A = \{x | |x| < 3, x \in Z\} = \{-2, -1, 0, 1, 2\}$$
,

$$B = \{x | |x| > 1, x \in Z\} = \{x | x > 1 \implies x < -1, x \in Z\},$$

所以 $A \cap B = \{2, -2\}$ .

故选: D.

【点睛】本题考查绝对值不等式的解法,考查集合交集的定义,属于基础题.

2. 
$$(1-i)^{4}=($$

A. -4

B. 4

C. –4*i* 

D. 4*i* 

#### 【答案】A

#### 【解析】

# 【分析】

根据指数幂的运算性质,结合复数的乘方运算性质进行求解即可.

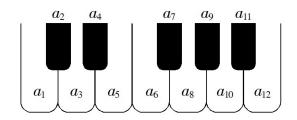


【详解】 $(1-i)^4 = [(1-i)^2]^2 = (1-2i+i^2)^2 = (-2i)^2 = -4$ .

故选: A.

【点睛】本题考查了复数的乘方运算性质,考查了数学运算能力,属于基础题.

3.如图,将钢琴上的 12 个键依次记为  $a_1$ , $a_2$ ,…, $a_{12}$ .设  $1 \le i < j < k \le 12$ .若 k-j=3 且 j-i=4,则称  $a_i$ , $a_j$ , $a_k$ 为原位大三和弦,若 k-j=4 且 j-i=3,则称  $a_i$ , $a_j$ , $a_k$ 为原位小三和弦.用这 12 个键可以构成的原位大三和弦与原位小三和弦的个数之和为(



A. 5

B. 8

C. 10

D. 15

【答案】C

#### 【解析】

#### 【分析】

根据原位大三和弦满足k-j=3, j-i=4,原位小三和弦满足k-j=4, j-i=3从i=1开始,利用列举法即可解出.

【详解】根据题意可知,原位大三和弦满足: k-j=3, j-i=4.

 $\therefore i=1, j=5, k=8$ ; i=2, j=6, k=9; i=3, j=7, k=10; i=4, j=8, k=11; i=5, j=9, k=12. 原位小三和弦满足: k-j=4, j-i=3.

 $\therefore i = 1, j = 4, k = 8; i = 2, j = 5, k = 9; i = 3, j = 6, k = 10; i = 4, j = 7, k = 11; i = 5, j = 8, k = 12.$  故个数之和为 10.

故选: C.

【点睛】本题主要考查列举法的应用,以及对新定义的理解和应用,属于基础题.

4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成 1200 份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压 500 份订单未配货,预计第二天的新订单超过 1600 份的概率为 0.05,志愿者每人每天能完成 50 份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于 0.95,则至少需要志愿者()

A. 10 名

B. 18 名

C. 24 名

D. 32 名

【答案】B



#### 【解析】

### 【分析】

算出第二天订单数,除以志愿者每天能完成的订单配货数即可.

【详解】由题意,第二天新增订单数为500+1600-1200=900,设需要志愿者x名,

 $\frac{50x}{900} \ge 0.95$ ,  $x \ge 17.1$ , 故需要志愿者18名.

故选: B

【点睛】本题主要考查函数模型的简单应用,属于基础题.

5.已知单位向量 $\vec{a}$ , $\vec{b}$  的夹角为 60°,则在下列向量中,与 $\vec{b}$  垂直的是 ( )

- A.  $\vec{a} + 2\vec{b}$
- B.  $2\vec{a} + \vec{b}$
- C.  $\vec{a} 2\vec{b}$
- D.  $2\vec{a} \vec{b}$

# 【答案】D

#### 【解析】

# 【分析】

根据平面向量数量积的定义、运算性质,结合两平面向量垂直数量积为零这一性质逐一判断即可.

【详解】由已知可得:  $\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos 60^\circ = 1 \times 1 \times \frac{1}{2} = \frac{1}{2}$ .

A: 因为 $(\vec{a}+2\vec{b})\cdot\vec{b}=\vec{a}\cdot\vec{b}+2\vec{b}^2=\frac{1}{2}+2\times 1=\frac{5}{2}\neq 0$ ,所以本选项不符合题意;

B: 因为 $(2\vec{a} + \vec{b}) \cdot \vec{b} = 2\vec{a} \cdot \vec{b} + \vec{b}^2 = 2 \times \frac{1}{2} + 1 = 2 \neq 0$ , 所以本选项不符合题意;

C: 因为 $(\vec{a}-2\vec{b})\cdot\vec{b}=\vec{a}\cdot\vec{b}-2\vec{b}^2=\frac{1}{2}-2\times 1=-\frac{3}{2}\neq 0$ ,所以本选项不符合题意;

D: 因为 $(2\vec{a} - \vec{b}) \cdot \vec{b} = 2\vec{a} \cdot \vec{b} - \vec{b}^2 = 2 \times \frac{1}{2} - 1 = 0$ , 所以本选项符合题意.

故选: D.

【点睛】本题考查了平面向量数量积的定义和运算性质,考查了两平面向量数量积为零则这两个平面向量 互相垂直这一性质,考查了数学运算能力.

6.记  $S_n$  为等比数列 $\{a_n\}$ 的前 n 项和.若  $a_5-a_3=12$ , $a_6-a_4=24$ ,则  $\frac{S_n}{a_n}=$  ( )

A.  $2^{n}-1$ 

- B.  $2-2^{1-n}$
- C.  $2-2^{n-1}$
- D.  $2^{1-n}-1$

#### 【答案】B

#### 【解析】

# 【分析】

根据等比数列的通项公式,可以得到方程组,解方程组求出首项和公比,最后利用等比数列的通

n项和公式进行求解即可.

【详解】设等比数列的公比为q,

曲 
$$a_5 - a_3 = 12$$
,  $a_6 - a_4 = 24$  可得: 
$$\begin{cases} a_1 q^4 - a_1 q^2 = 12 \\ a_1 q^5 - a_1 q^3 = 24 \end{cases} \Rightarrow \begin{cases} q = 2 \\ a_1 = 1 \end{cases}$$

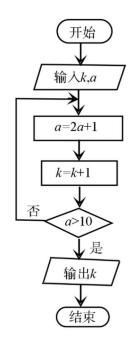
所以 
$$a_n = a_1 q^{n-1} = 2^{n-1}, S_n = \frac{a_1 (1 - q^n)}{1 - q} = \frac{1 - 2^n}{1 - 2} = 2^n - 1$$
 ,

因此 
$$\frac{S_n}{a_n} = \frac{2^n - 1}{2^{n-1}} = 2 - 2^{1-n}$$
.

故选: B.

【点睛】本题考查了等比数列的通项公式的基本量计算,考查了等比数列前n项和公式的应用,考查了数学运算能力.

7.执行右面的程序框图,若输入的 k=0,a=0,则输出的 k 为 ( )



A. 2

B. 3

C. 4

D. 5

# 【答案】C

#### 【解析】

#### 【分析】

由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k值,模拟程序的运行过程,分析循环中各变量值的变化情况,即可求得答案.

【详解】由己知中的程序框图可知:该程序的功能是利用循环结构计算并输出的k值模拟程序的运行过程



 $k = 0, \quad a = 0$ 

第 1 次循环,  $a = 2 \times 0 + 1 = 1$ , k = 0 + 1 = 1, 1 > 10 为否

第 2 次循环,  $a = 2 \times 1 + 1 = 3$ , k = 1 + 1 = 2, 3 > 10 为否

第 3 次循环, $a=2\times3+1=7$ ,k=2+1=3,7>10为否

第 4 次循环, $a = 2 \times 7 + 1 = 15$ , k = 3 + 1 = 4, 15 > 10 为是

退出循环

输出k=4.

故选: C.

【点睛】本题考查求循环框图的输出值,解题关键是掌握模拟循环语句运行的计算方法,考查了分析能力和计算能力,属于基础题.

8. 若过点 (2, 1) 的圆与两坐标轴都相切,则圆心到直线 2x - y - 3 = 0 的距离为 (2, 1)

A.  $\frac{\sqrt{5}}{5}$ 

B.  $\frac{2\sqrt{5}}{5}$ 

C.  $\frac{3\sqrt{5}}{5}$ 

D.  $\frac{4\sqrt{5}}{5}$ 

【答案】B

# 【解析】

# 【分析】

由题意可知圆心在第一象限,设圆心的坐标为(a,a),a>0,可得圆的半径为a,写出圆的标准方程,利用点(2,1)在圆上,求得实数a的值,利用点到直线的距离公式可求出圆心到直线2x-y-3=0的距离.

【详解】由于圆上的点(2,1)在第一象限,若圆心不在第一象限,

则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,

设圆心的坐标为(a,a),则圆的半径为a,

圆的标准方程为 $(x-a)^2 + (y-a)^2 = a^2$ .

由题意可得 $(2-a)^2 + (1-a)^2 = a^2$ ,

可得 $a^2-6a+5=0$ ,解得a=1或a=5,

所以圆心的坐标为(1,1)或(5,5),

圆心(1,1)到直线2x-y-3=0的距离均为 $d_1=\frac{|2\times 1-1-3|}{\sqrt{5}}=\frac{2\sqrt{5}}{5}$ ;



圆心 (5,5) 到直线 2x-y-3=0 的距离均为  $d_2 = \frac{|2\times 5-5-3|}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$ 

圆心到直线 2x-y-3=0 的距离均为  $d=\frac{\left|-2\right|}{\sqrt{5}}=\frac{2\sqrt{5}}{5}$ ;

所以,圆心到直线 2x-y-3=0 的距离为  $\frac{2\sqrt{5}}{5}$ .

故选: B.

【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题. 9.设O为坐标原点,直线x=a与双曲线 $C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的两条渐近线分别交于D,E两点,若ODE的面积为B,则C的焦距的最小值为(

A. 4

B. 8

C. 16

D. 32

【答案】B

【解析】

【分析】

因为 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 (a > 0, b > 0)$ ,可得双曲线的渐近线方程是 $y = \pm \frac{b}{a} x$ ,与直线x = a 联立方程求得D,E 两点坐标,即可求得|ED|,根据|DDE| 的面积为B,可得|BD|,根据|BD|,根据|BD|,根据|BD|,根据|BD|,根据|BD|,根据|BD|,根据|BD|,根据|BD|,相对

【详解】 :: 
$$C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$$

 $\therefore$  双曲线的渐近线方程是  $y = \pm \frac{b}{a}x$ 

:: 直线 x = a 与双曲线  $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$  的两条渐近线分别交于 D , E 两点

不妨设D为在第一象限,E在第四象限

联立 
$$\begin{cases} x = a \\ y = \frac{b}{a}x \end{cases}$$
, 解得 
$$\begin{cases} x = a \\ y = b \end{cases}$$

故D(a,b)

联立 
$$\begin{cases} x = a \\ y = -\frac{b}{a}x \end{cases}, \quad \text{解得} \begin{cases} x = a \\ y = -b \end{cases}$$

故E(a,-b)



 $\therefore |ED| = 2b$ 

$$\therefore \Box ODE$$
 面积为:  $S_{\triangle ODE} = \frac{1}{2}a \times 2b = ab = 8$ 

$$\therefore$$
 双曲线  $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 

∴ 其焦距为 
$$2c = 2\sqrt{a^2 + b^2} \ge 2\sqrt{2ab} = 2\sqrt{16} = 8$$

当且仅当 $a = b = 2\sqrt{2}$  取等号

:. *C* 的焦距的最小值: 8

故选: B.

【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.

10.设函数 
$$f(x) = x^3 - \frac{1}{x^3}$$
,则  $f(x)$  ( )

A. 是奇函数,且在(0,+∞)单调递增

B. 是奇函数,且在(0,+∞)单调递减

C. 是偶函数,且在(0,+∞)单调递增

D. 是偶函数,且在(0,+∞)单调递减

# 【答案】A

# 【解析】

# 【分析】

根据函数的解析式可知函数的定义域为 $\{x | x \neq 0\}$ ,利用定义可得出函数f(x)为奇函数,再根据函数的单调性法则,即可解出.

【详解】因为函数  $f(x) = x^3 - \frac{1}{x^3}$  定义域为  $\{x | x \neq 0\}$  , 其关于原点对称,而 f(-x) = -f(x) ,

所以函数 f(x) 为奇函数.

又因为函数  $y = x^3$  在 $\left(0, +?\right)$  上单调递增,在 $\left(-?, 0\right)$  上单调递增,

而 
$$y = \frac{1}{x^3} = x^{-3}$$
 在  $(0,+?)$  上单调递减,在  $(-?,0)$  上单调递减,

所以函数  $f(x) = x^3 - \frac{1}{x^3}$  在(0,+?) 上单调递增,在(-?,0) 上单调递增.

故选: A.

【点睛】本题主要考查利用函数的解析式研究函数的性质,属于基础题.



11.已知 $\triangle ABC$ 是面积为 $\frac{9\sqrt{3}}{4}$ 的等边三角形,且其顶点都在球O的球面上.若球O的表面积为  $16~\pi$ ,则O到 平面 ABC 的距离为(

A.  $\sqrt{3}$ 

B.  $\frac{3}{2}$ 

C. 1

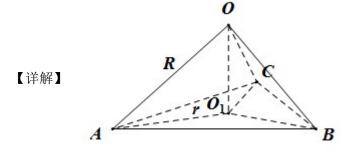
D.  $\frac{\sqrt{3}}{2}$ 

【答案】C

# 【解析】

#### 【分析】

根据球O的表面积和 $\square ABC$ 的面积可求得球O的半径R和 $\square ABC$ 外接圆半径r,由球的性质可知所求距 



设球O的半径为R,则 $4\pi R^2 = 16\pi$ ,解得: R = 2.

设 $\Box ABC$  外接圆半径为r, 边长为a,

::□ABC是面积为 $\frac{9\sqrt{3}}{4}$ 的等边三角形,

$$\therefore \frac{1}{2}a^2 \times \frac{\sqrt{3}}{2} = \frac{9\sqrt{3}}{4}, \quad \text{if } \vec{q} : \quad a = 3, \quad \therefore r = \frac{2}{3} \times \sqrt{a^2 - \frac{a^2}{4}} = \frac{2}{3} \times \sqrt{9 - \frac{9}{4}} = \sqrt{3},$$

:: 球心 O 到平面 ABC 的距离  $d = \sqrt{R^2 - r^2} = \sqrt{4 - 3} = 1$ .

故选: C.

【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明 确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.

$$12.$$
若 $2^x - 2^y < 3^{-x} - 3^{-y}$ ,则( )

A.  $\ln(y-x+1) > 0$  B.  $\ln(y-x+1) < 0$  C.  $\ln|x-y| > 0$  D.  $\ln|x-y| < 0$ 

【答案】A

# 【解析】

【分析】



将不等式变为 $2^x - 3^{-x} < 2^y - 3^{-y}$ ,根据 $f(t) = 2^t - 3^{-t}$ 的单调性知x < y,以此去判断各个选项中真数与1的大小关系,进而得到结果.

【详解】由 $2^x - 2^y < 3^{-x} - 3^{-y}$ 得:  $2^x - 3^{-x} < 2^y - 3^{-y}$ ,

 $\Rightarrow f(t) = 2^{t} - 3^{-t}$ ,

 $\therefore y = 2^x$  为 R 上的增函数,  $y = 3^{-x}$  为 R 上的减函数,  $\therefore f(t)$  为 R 上的增函数,

 $\therefore x < y$ ,

Qy-x>0, ∴ y-x+1>1, ∴  $\ln(y-x+1)>0$ , 则 A 正确, B 错误;

Q|x-y|与1的大小不确定,故 CD 无法确定.

故选: A.

【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到x,y的大小关系,考查了转化与化归的数学思想.

二、填空题:本题共4小题,每小题5分,共20分.

# 【答案】 $\frac{1}{9}$

# 【解析】

# 【分析】

直接利用余弦的二倍角公式进行运算求解即可.

【详解】 
$$\cos 2x = 1 - 2\sin^2 x = 1 - 2 \times (-\frac{2}{3})^2 = 1 - \frac{8}{9} = \frac{1}{9}$$
.

故答案为:  $\frac{1}{9}$ .

【点睛】本题考查了余弦的二倍角公式的应用,属于基础题.

14.记 $S_n$  为等差数列 $\{a_n\}$  的前 n 项和. 若  $a_1 = -2$ ,  $a_2 + a_6 = 2$ , 则 $S_{10} =$ \_\_\_\_\_\_.

# 【答案】25

# 【解析】

# 【分析】

因为 $\{a_n\}$ 是等差数列,根据已知条件 $a_2+a_6=2$ ,求出公差,根据等差数列前n项和,即可求得答案.

【详解】: $\{a_n\}$ 是等差数列,且 $a_1 = -2$ , $a_2 + a_6 = 2$ 



设 $\{a_n\}$ 等差数列的公差d

根据等差数列通项公式:  $a_n = a_1 + (n-1)d$ 

可得 $a_1 + d + a_1 + 5d = 2$ 

即: 
$$-2+d+(-2)+5d=2$$

整理可得: 6d = 6

解得: d = 1

 $\therefore$  根据等差数列前 n 项和公式:  $S_n = na_1 + \frac{n(n-1)}{2}d, n \in N^*$ 

可得: 
$$S_{10} = 10(-2) + \frac{10 \times (10 - 1)}{2} = -20 + 45 = 25$$

$$\therefore S_{10} = 25.$$

故答案为: 25.

【点睛】本题主要考查了求等差数列的前n项和,解题关键是掌握等差数列的前n项和公式,考查了分析能力和计算能力,属于基础题.

能力和计算能力,属于基础题. 
$$\begin{cases} x+y \ge -1, \\ x-y \ge -1, \\ y \ge -1, \\ x-y \le 1, \end{cases}$$
 15.若  $x$ ,  $y$  满足约束条件 
$$\begin{cases} x+y \ge -1, \\ x-y \ge -1, \\ y \ge -1, \end{cases}$$
 15.若  $x$ ,  $y$  满足约束条件 
$$\begin{cases} x+y \ge -1, \\ x-y \ge -1, \\ y \ge -1, \end{cases}$$

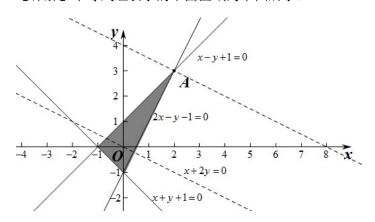
#### 【答案】8

# 【解析】

#### 【分析】

在平面直角坐标系内画出不等式组表示的平面区域,然后平移直线  $y = -\frac{1}{2}x$ ,在平面区域内找到一点使得直线  $y = -\frac{1}{2}x + \frac{1}{2}z$  在纵轴上的截距最大,求出点的坐标代入目标函数中即可.

【详解】不等式组表示的平面区域为下图所示:



平移直线  $y=-\frac{1}{2}x$ ,当直线经过点 A 时,直线  $y=-\frac{1}{2}x+\frac{1}{2}z$  在纵轴上的截距最大,

此时点 A 的坐标是方程组  $\begin{cases} x-y=-1 \\ 2x-y=1 \end{cases}$  的解,解得:  $\begin{cases} x=2 \\ y=3 \end{cases}$ 

因此 z = x + 2y 的最大值为:  $2 + 2 \times 3 = 8$ .

故答案为: 8.

【点睛】本题考查了线性规划的应用,考查了数形结合思想,考查数学运算能力.

16.设有下列四个命题:

 $p_1$ : 两两相交且不过同一点的三条直线必在同一平面内.

p2: 过空间中任意三点有且仅有一个平面.

p3: 若空间两条直线不相交,则这两条直线平行.

 $p_4$ : 若直线  $l \subset$  平面  $\alpha$ ,直线  $m \perp$  平面  $\alpha$ ,则  $m \perp l$ .

则下述命题中所有真命题的序号是 .

①  $p_1 \land p_4$ ②  $p_1 \land p_2$ ③  $\neg p_2 \lor p_3$ ④  $\neg p_3 \lor \neg p_4$ 

#### 【答案】(1)(3)(4)

#### 【解析】

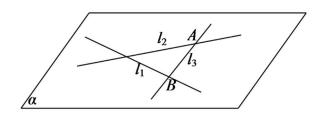
# 【分析】

利用两交线直线确定一个平面可判断命题  $p_1$  的真假;利用三点共线可判断命题  $p_2$  的真假;利用异面直线可判断命题  $p_3$  的真假,利用线面垂直的定义可判断命题  $p_4$  的真假.再利用复合命题的真假可得出结论.

【详解】对于命题  $p_1$ , 可设  $l_1$ 与  $l_2$ 相交, 这两条直线确定的平面为 $\alpha$ ;

若 $l_1$ 与 $l_1$ 相交,则交点A在平面 $\alpha$ 内,

同理,  $l_3$ 与 $l_2$ 的交点B也在平面 $\alpha$ 内,



所以,  $AB \subset \alpha$ , 即 $l_3 \subset \alpha$ , 命题 $p_1$ 为真命题;

对于命题 $p_2$ ,若三点共线,则过这三个点的平面有无数个,



命题  $p_2$  为假命题;

对于命题 $p_3$ ,空间中两条直线相交、平行或异面,

命题 $p_3$ 为假命题;

对于命题  $p_4$ , 若直线  $m \perp$  平面  $\alpha$ ,

则m垂直于平面 $\alpha$ 内所有直线,

:: 直线l ⊂ 平面 $\alpha$  , : 直线m ⊥ 直线l ,

命题  $p_4$  为真命题.

综上可知, $p_1$ , $p_4$ 为真命题, $p_2$ , $p_3$ 为假命题,

 $p_1 \wedge p_4$  为真命题, $p_1 \wedge p_2$  为假命题,

 $\neg p_2 \lor p_3$ 为真命题,  $\neg p_3 \lor \neg p_4$ 为真命题.

故答案为: ①③④.

【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力, 属于中等题.

三、解答题: 共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.

(一) 必考题: 共60分.

17.  $\triangle ABC$  的内角 A, B, C 的对边分别为 a, b, c, 已知  $\cos^2(\frac{\pi}{2} + A) + \cos A = \frac{5}{4}$ .

(1) 求*A*;

(2) 若
$$b-c=\frac{\sqrt{3}}{3}a$$
, 证明:  $\triangle ABC$ 是直角三角形.

【答案】(1)  $A = \frac{\pi}{3}$ ; (2) 证明见解析

#### 【解析】

#### 【分析】

(1) 根据诱导公式和同角三角函数平方关系,  $\cos^2\left(\frac{\pi}{2} + A\right) + \cos A = \frac{5}{4}$  可化为 $1 - \cos^2 A + \cos A = \frac{5}{4}$  ,

即可解出;

(2) 根据余弦定理可得 $b^2 + c^2 - a^2 = bc$ , 将 $b - c = \frac{\sqrt{3}}{3}a$  代入可找到a, b, c 关系,

再根据勾股定理或正弦定理即可证出.

【详解】(1) 因为
$$\cos^2\left(\frac{\pi}{2} + A\right) + \cos A = \frac{5}{4}$$
,所以 $\sin^2 A + \cos A = \frac{5}{4}$ ,

$$\mathbb{R} 1 - \cos^2 A + \cos A = \frac{5}{4} ,$$

解得 
$$\cos A = \frac{1}{2}$$
,又  $0 < A < \pi$ ,

所以
$$A = \frac{\pi}{3}$$
;

(2) 因为
$$A = \frac{\pi}{3}$$
,所以 $\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{1}{2}$ ,

$$\mathbb{D} b^2 + c^2 - a^2 = bc \, \mathbb{D},$$

又
$$b-c = \frac{\sqrt{3}}{3}a$$
②,将②代入①得, $b^2 + c^2 - 3(b-c)^2 = bc$ ,

即 
$$2b^2 + 2c^2 - 5bc = 0$$
, 而  $b > c$ , 解得  $b = 2c$ 

所以
$$a = \sqrt{3}c$$
,

故
$$b^2 = a^2 + c^2$$
,

即口ABC 是直角三角形.

【点睛】本题主要考查诱导公式和平方关系的应用,利用勾股定理或正弦定理,余弦定理判断三角形的形状,属于基础题.

18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的 200 个地块,从这些地块中用简单随机抽样的方法抽取 20 个作为样区,调查得到样本数据 $(x_i, y_i)(i=1, 2, ..., 20)$ ,其中 $x_i$ 和 $y_i$ 分别表示第i个样区的植物覆盖面积(单位:公顷)和这种

野生动物的数量,并计算得 
$$\sum_{i=1}^{20} x_i = 60$$
 ,  $\sum_{i=1}^{20} y_i = 1200$  ,  $\sum_{i=1}^{20} (x_i - \overline{x})^2 = 80$  ,  $\sum_{i=1}^{20} (y_i - \overline{y})^2 = 9000$  ,

$$\sum_{i=1}^{20} (x_i - \overline{x})(y_i - \overline{y}) = 800.$$

(1) 求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物



均数乘以地块数);

- (2) 求样本 $(x_i, y_i)(i=1, 2, ..., 20)$ 的相关系数 (精确到 0.01);
- (3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.

附: 相关系数 
$$r = \frac{\displaystyle\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\displaystyle\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$
,  $\sqrt{2} \approx 1.414$ .

【答案】(1) 12000; (2) 0.94; (3) 详见解析

#### 【解析】

#### 【分析】

(1) 利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可;

(2) 利用公式 
$$r = \frac{\sum_{i=1}^{20} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{20} (x_i - \overline{x})^2 \sum_{i=1}^{20} (y_i - \overline{y})^2}}$$
 计算即可;

(3) 各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样.

【详解】(1) 样区野生动物平均数为
$$\frac{1}{20}\sum_{i=1}^{20}y_i = \frac{1}{20} \times 1200 = 60$$
,

地块数为 200, 该地区这种野生动物的估计值为  $200 \times 60 = 12000$ 

(2) 样本 $(x_i, y_i)$  (i=1, 2, ..., 20)的相关系数为

$$r = \frac{\sum_{i=1}^{20} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{20} (x_i - \overline{x})^2 \sum_{i=1}^{20} (y_i - \overline{y})^2}} = \frac{800}{\sqrt{80 \times 9000}} = \frac{2\sqrt{2}}{3} \approx 0.94$$

(3) 由(2) 知各样区的这种野生动物的数量与植物覆盖面积有很强的正相关性,

由于各地块间植物覆盖面积差异很大,从俄各地块间这种野生动物的数量差异很大,

采用分层抽样的方法较好地保持了样本结构与总体结构得以执行,提高了样本的代表性,

从而可以获得该地区这种野生动物数量更准确的估计.

【点睛】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力, 是一道容易题.



19.已知椭圆  $C_1$ :  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  (a > b > 0)的右焦点 F 与抛物线  $C_2$  的焦点重合, $C_1$  的中心与  $C_2$  的顶点重合.过 F 且与 x 轴重直的直线交  $C_1$  于 A,B 两点,交  $C_2$  于 C,D 两点,且  $|CD| = \frac{4}{3} |AB|$ .

- (1) 求  $C_1$  的离心率;
- (2) 若  $C_1$  的四个顶点到  $C_2$  的准线距离之和为 12, 求  $C_1$ 与  $C_2$ 的标准方程.

【答案】(1) 
$$\frac{1}{2}$$
; (2)  $C_1$ :  $\frac{x^2}{16} + \frac{y^2}{12} = 1$ ,  $C_2$ :  $y^2 = 8x$ .

# 【解析】

#### 【分析】

- (1)根据题意求出  $C_2$  的方程,结合椭圆和抛物线的对称性不妨设 A,C 在第一象限,运用代入法求出 A,B,C,D 点的纵坐标,根据 $|CD|=rac{4}{3}|AB|$ ,结合椭圆离心率的公式进行求解即可;
- (2)由(1)可以得到椭圆的标准方程,确定椭圆的四个顶点坐标,再确定抛物线的准线方程,最后结合已知进行求解即可;

【详解】解: (1) 因为椭圆  $C_1$  的右焦点坐标为:  $F(\mathbf{c},0)$  ,所以抛物线  $C_2$  的方程为  $y^2=4cx$  ,其中  $c=\sqrt{a^2-b^2}$  .

不妨设 A, C 在第一象限,因为椭圆  $C_1$  的方程为:  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ ,

所以当x=c时,有 $\frac{c^2}{a^2}+\frac{y^2}{b^2}=1$   $\Rightarrow$   $y=\pm\frac{b^2}{a}$ ,因此A,B的纵坐标分别为 $\frac{b^2}{a}$ , $-\frac{b^2}{a}$ ;

又因为抛物线  $C_2$  的方程为  $y^2=4cx$  ,所以当 x=c 时,有  $y^2=4c\cdot c\Rightarrow y=\pm 2c$  ,

所以C,D的纵坐标分别为2c,-2c,故| $AB \models \frac{2b^2}{a}$ ,| $CD \models 4c$ .

由
$$|CD| = \frac{4}{3} |AB|$$
得  $4c = \frac{8b^2}{3a}$ ,即  $3 \cdot \frac{c}{a} = 2 - 2(\frac{c}{a})^2$ ,解得  $\frac{c}{a} = -2$  (舍去), $\frac{c}{a} = \frac{1}{2}$ .

所以 $C_1$ 的离心率为 $\frac{1}{2}$ .

(2) 由 (1) 知 a=2c ,  $b=\sqrt{3}c$  , 故  $C_1:\frac{x^2}{4c^2}+\frac{y^2}{3c^2}=1$  ,所以  $C_1$  的四个顶点坐标分别为 (2c,0) ,

$$(-2c,0)$$
,  $(0,\sqrt{3}c)$ ,  $(0,-\sqrt{3}c)$ ,  $C_2$ 的准线为 $x=-c$ .

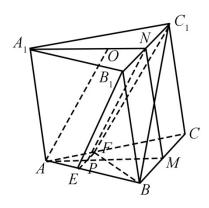


由已知得3c+c+c+c=12,即c=2.

所以 $C_1$ 的标准方程为 $\frac{x^2}{16} + \frac{y^2}{12} = 1$ , $C_2$ 的标准方程为 $y^2 = 8x$ .

【点睛】本题考查了求椭圆的离心率,考查了求椭圆和抛物线的标准方程,考查了椭圆的四个顶点的 坐标以及抛物线的准线方程,考查了数学运算能力.

20.如图,已知三棱柱 ABC— $A_1B_1C_1$  的底面是正三角形,侧面  $BB_1C_1C$  是矩形,M,N分别为 BC, $B_1C_1$  的中点,P为 AM 上一点.过  $B_1C_1$ 和 P的平面交 AB 于 E,交 AC 于 F.



- (1) 证明: *AA*<sub>1</sub>//*MN*, 且平面 *A*<sub>1</sub>*AMN* 上平面 *EB*<sub>1</sub>*C*<sub>1</sub>*F*;
- (2) 设 O 为 $\triangle A_1B_1C_1$  的中心,若 AO=AB=6,AO//平面  $EB_1C_1F$ ,且 $\angle MPN=\frac{\pi}{3}$ ,求四棱锥  $B-EB_1C_1F$  的体积.

【答案】(1) 证明见解析: (2) 24.

#### 【解析】

# 【分析】

- (1) 由M,N分别为BC, $B_1C_1$ 的中点, $MN//CC_1$ ,根据条件可得 $AA_1$ // $BB_1$ ,可证 $MN//AA_1$ ,要证平面  $EB_1C_1F$  上平面 $A_1AMN$ ,只需证明EF 上平面 $A_1AMN$ 即可;
- (2) 根据已知条件求得  $S_{ ext{ iny DD} ext{ iny EB}_1 C_1 F}$  和 M 到 PN 的距离,根据椎体体积公式,即可求得  $V_{ ext{ iny B-EB}_1 C_1 F}$  .

【详解】(1) :: M, N 分别为 BC,  $B_1C_1$  的中点,

 $\therefore MN//BB_1$ 

 $\nabla AA_1 / BB_1$ 

 $\therefore MN//AA_1$ 

在等边 $\square ABC$ 中,M为BC中点,则 $BC \perp AM$ 



又::侧面  $BB_1C_1C$  为矩形,

 $\therefore BC \perp BB_1$ 

 $:: MN//BB_1$ 

 $MN \perp BC$ 

 $\oplus MN \cap AM = M$ , MN,  $AM \subset \text{Pm} A_1AMN$ 

∴  $BC \perp$  平面  $A_1AMN$ 

又:  $B_1C_1//BC$ ,且  $B_1C_1$   $\subset$  平面 ABC, BC  $\subset$  平面 ABC,

 $\therefore B_1C_1$ // 平面 ABC

又:  $B_1C_1$   $\subset$  平面  $EB_1C_1F$  ,且平面  $EB_1C_1F$   $\cap$  平面 ABC = EF

 $\therefore B_1C_1 / /EF$ 

∴ *EF* //*BC* 

又:: BC 上平面  $A_1AMN$ 

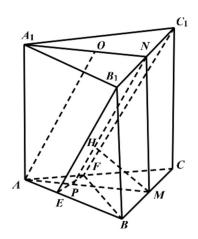
∴ EF ⊥ 平面  $A_1AMN$ 

 $:: EF \subset$  平面  $EB_1C_1F$ 

∴ 平面  $EB_1C_1F$  ⊥ 平面  $A_1AMN$ 

(2) 过M作PN垂线,交点为H,

画出图形,如图



:: AO// 平面  $EB_1C_1F$ 



 $AO \subset$ 平面  $A_1AMN$ , 平面  $A_1AMN \cap$ 平面  $EB_1C_1F = NP$ 

∴ *AO*//*NP* 

又:: NO//AP

$$\therefore AO = NP = 6$$

:: O为 $\triangle A_1B_1C_1$ 的中心.

:. 
$$ON = \frac{1}{3} A_1 C_1 \sin 60^\circ = \frac{1}{3} \times 6 \times \sin 60^\circ = \sqrt{3}$$

故: 
$$ON = AP = \sqrt{3}$$
, 则  $AM = 3AP = 3\sqrt{3}$ ,

:: 平面  $EB_1C_1F$  上平面  $A_1AMN$  ,平面  $EB_1C_1F$   $\cap$  平面  $A_1AMN = NP$  ,

MH  $\subset$  平面  $A_1AMN$ 

∴ MH ⊥ 平面  $EB_1C_1F$ 

又: 在等边
$$\Box ABC$$
 中 $\frac{EF}{BC} = \frac{AP}{AM}$ 

$$\mathbb{E}F = \frac{AP \cdot BC}{AM} = \frac{\sqrt{3} \times 6}{3\sqrt{3}} = 2$$

由(1)知,四边形 EB<sub>1</sub>C<sub>1</sub>F 为梯形

:. 四边形 
$$EB_1C_1F$$
 的面积为:  $S_{\text{四边形}EB_1C_1F} = \frac{EF + B_1C_1}{2} \cdot NP = \frac{2+6}{2} \times 6 = 24$ 

$$\therefore V_{B-EB_1C_1F}=rac{1}{3}S_{ ext{ iny Didfield}}$$
  $\cdot h$  ,

h为M到PN的距离 $MH = 2\sqrt{3} \cdot \sin 60^\circ = 3$ ,

$$\therefore V = \frac{1}{3} \times 24 \times 3 = 24.$$

【点睛】本题主要考查了证明线线平行和面面垂直,及其求四棱锥的体积,解题关键是掌握面面垂直转为 求证线面垂直的证法和棱锥的体积公式,考查了分析能力和空间想象能力,属于中档题.

21.已知函数 $f(x) = 2\ln x + 1$ .

(1) 若f(x) ≤2x+c,求c 的取值范围;

(2) 设 
$$a > 0$$
 时,讨论函数  $g(x) = \frac{f(x) - f(a)}{x - a}$  的单调性.



【答案】(1)  $c \ge -1$ ; (2) g(x) 在区间(0,a)和 $(a,+\infty)$ 上单调递减,没有递增区间

#### 【解析】

#### 【分析】

(1) 不等式  $f(x) \le 2x + c$  转化为  $f(x) - 2x - c \le 0$ ,构造新函数,利用导数求出新函数的最大值,进而进行求解即可;

(2) 对函数 g(x) 求导,把导函数 g'(x) 的分子构成一个新函数 m(x),再求导得到 m'(x),根据 m'(x) 的 正负,判断 m(x) 的单调性,进而确定 g'(x) 的正负性,最后求出函数 g(x) 的单调性.

【详解】(1) 函数 f(x) 的定义域为:  $(0,+\infty)$ 

$$f(x) \le 2x + c \Rightarrow f(x) - 2x - c \le 0 \Rightarrow 2 \ln x + 1 - 2x - c \le 0(*)$$

设 
$$h(x) = 2 \ln x + 1 - 2x - c(x > 0)$$
 , 则有  $h'(x) = \frac{2}{x} - 2 = \frac{2(1-x)}{x}$  ,

当x > 1时,h'(x) < 0, h(x)单调递减,

当0 < x < 1时,h'(x) > 0, h(x)单调递增,

所以当x=1时,函数h(x)有最大值,

$$\mathbb{P} h(x)_{\text{max}} = h(1) = 2 \ln 1 + 1 - 2 \times 1 - c = -1 - c ,$$

要想不等式(\*)在 $(0,+\infty)$ 上恒成立,

只需  $h(x)_{\text{max}} \le 0 \Rightarrow -1 - c \le 0 \Rightarrow c \ge -1$ ;

(2) 
$$g(x) = \frac{2 \ln x + 1 - (2 \ln a - 1)}{x - a} = \frac{2(\ln x - \ln a)}{x - a} (x > 0 \perp x \neq a)$$

因此 
$$g'(x) = \frac{2(x-a-x\ln x + x\ln a)}{x(x-a)^2}$$
, 设  $m(x) = 2(x-a-x\ln x + x\ln a)$ ,

则有  $m'(x) = 2(\ln a - \ln x)$ ,

当x > a 时, $\ln x > \ln a$ ,所以m'(x) < 0,m(x) 单调递减,因此有m(x) < m(a) = 0,即

g'(x) < 0, 所以g(x)单调递减;

当0 < x < a 时, $\ln x < \ln a$ ,所以m'(x) > 0,m(x) 单调递增,因此有m(x) < m(a) = 0,即g'(x) < 0,

所以g(x)单调递减,

所以函数 g(x) 在区间 (0,a) 和  $(a,+\infty)$  上单调递减,没有递增区间.



【点睛】本题考查了利用导数研究不等式恒成立问题,以及利用导数判断含参函数的单调性,考查了数学运算能力,是中档题.

(二)选考题:共10分.请考生在第22、23题中选定一题作答,并用2B铅笔在答题卡上将所选题目对应的题号方框涂黑.按所涂题号进行评分,不涂、多涂均按所答第一题评分;多答按所答第一题评分.

[选修 4-4: 坐标系与参数方程]

22.已知曲线 
$$C_1$$
,  $C_2$ 的参数方程分别为  $C_1$ : 
$$\begin{cases} x = 4\cos^2\theta, \\ y = 4\sin^2\theta \end{cases} (\theta \text{ 为参数}), C_2$$
: 
$$\begin{cases} x = t + \frac{1}{t}, \\ y = t - \frac{1}{t} \end{cases} (t \text{ 为参数}).$$

- (1) 将  $C_1$ ,  $C_2$ 的参数方程化为普通方程;
- (2) 以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设  $C_1$ , $C_2$ 的交点为 P,求圆心在极轴上,且经过极点和 P的圆的极坐标方程.

【答案】(1) 
$$C_1: x+y=4; C_2: x^2-y^2=4;$$
 (2)  $\rho=\frac{17}{5}\cos\theta$ .

#### 【解析】

# 【分析】

- (1) 分别消去参数 $\theta$ 和t即可得到所求普通方程;
- (2) 两方程联立求得点 P ,求得所求圆的直角坐标方程后,根据直角坐标与极坐标的互化即可得到所求极坐标方程.

【详解】(1) 由  $\cos^2 \theta + \sin^2 \theta = 1$  得  $C_1$  的普通方程为: x + y = 4;

由 
$$\begin{cases} x = t + \frac{1}{t} \\ y = t - \frac{1}{t} \end{cases}$$
 得: 
$$\begin{cases} x^2 = t^2 + \frac{1}{t^2} + 2 \\ y^2 = t^2 + \frac{1}{t^2} - 2 \end{cases}$$
 , 两式作差可得  $C_2$  的普通方程为:  $x^2 - y^2 = 4$ .

(2) 
$$\text{in} \begin{cases} x+y=4 \\ x^2-y^2=4 \end{cases}$$
  $\text{#:} \begin{cases} x=\frac{5}{2} \\ y=\frac{3}{2} \end{cases}$ ,  $\text{In } P\left(\frac{5}{2},\frac{3}{2}\right)$ ;

设所求圆圆心的直角坐标为(a,0), 其中a>0,

则
$$\left(a-\frac{5}{2}\right)^2+\left(0-\frac{3}{2}\right)^2=a^2$$
,解得:  $a=\frac{17}{10}$ , ∴ 所求圆的半径  $r=\frac{17}{10}$ ,



:. 所求圆的直角坐标方程为: 
$$\left(x - \frac{17}{10}\right)^2 + y^2 = \left(\frac{17}{10}\right)^2$$
, 即  $x^2 + y^2 = \frac{17}{5}x$ ,

 $\therefore$  所求圆的极坐标方程为  $\rho = \frac{17}{5}\cos\theta$ .

【点睛】本题考查极坐标与参数方程的综合应用问题,涉及到参数方程化普通方程、直角坐标方程化极坐标方程等知识,属于常考题型.

# [选修 4—5:不等式选讲]

23.已知函数  $f(x) = |x-a^2| + |x-2a+1|$ .

- (1) 当a = 2时,求不等式f(x)...4的解集;
- (2) 若 f(x)...4, 求 a 的取值范围.

【答案】(1) 
$$\left\{x \middle| x \le \frac{3}{2} \text{ 或 } x \ge \frac{11}{2}\right\}$$
; (2)  $\left(-\infty, -1\right] \cup \left[3, +\infty\right)$ .

# 【解析】

#### 【分析】

- (1) 分别在 $x \le 3$ 、3 < x < 4和 $x \ge 4$ 三种情况下解不等式求得结果;
- (2) 利用绝对值三角不等式可得到 $f(x) \ge (a-1)^2$ ,由此构造不等式求得结果.

【详解】(1) 当
$$a=2$$
时, $f(x)=|x-4|+|x-3|$ .

当 
$$x \le 3$$
 时,  $f(x) = 4 - x + 3 - x = 7 - 2x \ge 4$ ,解得:  $x \le \frac{3}{2}$ ;

当
$$3 < x < 4$$
时, $f(x) = 4 - x + x - 3 = 1 \ge 4$ ,无解;

当 
$$x \ge 4$$
 时,  $f(x) = x - 4 + x - 3 = 2x - 7 \ge 4$ ,解得:  $x \ge \frac{11}{2}$ ;

(2) 
$$f(x) = |x-a^2| + |x-2a+1| \ge |(x-a^2) - (x-2a+1)| = |-a^2 + 2a-1| = (a-1)^2$$
 (当且仅当

 $2a-1 \le x \le a^2$  时取等号),

$$\therefore (a-1)^2 \ge 4$$
, 解得:  $a \le -1$  或  $a \ge 3$ ,

 $\therefore a$  的取值范围为 $(-\infty, -1]$ U $[3, +\infty)$ .

【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题

